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1. Executive Summary
This guide provides comprehensive patterns for migrating SQL Server Integration Services (SSIS) packages to Databricks. It covers task mapping, data flow conversions, control flow patterns, and orchestration strategies.
________________________________________________________________________________
2. Conceptual Mapping
2.1 Component Mapping
	SSIS Concept
	Databricks Equivalent

	Package
	Notebook / Job

	Control Flow
	Job Tasks / Workflow

	Data Flow Task
	DataFrame transformations

	Execute SQL Task
	spark.sql()

	Script Task
	Python code in notebook

	For Loop Container
	Python for loop

	Foreach Loop Container
	Python iteration / parallel tasks

	Sequence Container
	Task group in Job

	OLE DB Source
	spark.read.jdbc()

	OLE DB Destination
	DataFrame.write.jdbc() / Delta

	Flat File Source
	spark.read.csv()

	Lookup
	DataFrame join

	Derived Column
	withColumn()

	Conditional Split
	filter() / Router pattern

	Sort
	orderBy()

	Aggregate
	groupBy().agg()

	Merge Join
	join()

	Union All
	union() / unionByName()

	Variables
	Notebook widgets / Task values

	Parameters
	Job parameters

	Connection Manager
	Secrets + JDBC config



2.2 Architecture Comparison
┌─────────────────────────────────────────────────────────────────────────────┐
│                      SSIS vs DATABRICKS ARCHITECTURE                         │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  SSIS                                 DATABRICKS                            │
│  ┌─────────────────────────┐          ┌─────────────────────────┐          │
│  │    SSIS Package         │          │   Databricks Job        │          │
│  │  ┌─────────────────┐    │          │  ┌─────────────────┐    │          │
│  │  │  Control Flow   │    │          │  │   Job Tasks     │    │          │
│  │  │  (Orchestration)│    │  ──────▶ │  │  (Orchestration)│    │          │
│  │  └─────────────────┘    │          │  └─────────────────┘    │          │
│  │  ┌─────────────────┐    │          │  ┌─────────────────┐    │          │
│  │  │   Data Flow     │    │          │  │    Notebooks    │    │          │
│  │  │   (Transform)   │    │  ──────▶ │  │   (Transform)   │    │          │
│  │  └─────────────────┘    │          │  └─────────────────┘    │          │
│  │  ┌─────────────────┐    │          │  ┌─────────────────┐    │          │
│  │  │    Variables    │    │          │  │  Task Values /  │    │          │
│  │  │   Parameters    │    │  ──────▶ │  │   Parameters    │    │          │
│  │  └─────────────────┘    │          │  └─────────────────┘    │          │
│  │  ┌─────────────────┐    │          │  ┌─────────────────┐    │          │
│  │  │  Connections    │    │          │  │     Secrets     │    │          │
│  │  │   Managers      │    │  ──────▶ │  │   + JDBC URLs   │    │          │
│  │  └─────────────────┘    │          │  └─────────────────┘    │          │
│  └─────────────────────────┘          └─────────────────────────┘          │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘

________________________________________________________________________________
3. Control Flow Migration
3.1 Execute SQL Task
-- SSIS: Execute SQL Task
-- Connection: OLE DB to SQL Server
-- SQL Statement: TRUNCATE TABLE staging.orders; INSERT INTO log VALUES(GETDATE(), 'Started')

# Databricks equivalent
# Execute against SQL Server
jdbc_url = "jdbc:sqlserver://server:1433;database=mydb"
properties = {
    "user": dbutils.secrets.get("scope", "sql_user"),
    "password": dbutils.secrets.get("scope", "sql_password"),
    "driver": "com.microsoft.sqlserver.jdbc.SQLServerDriver"
}

# Execute SQL (for DDL/DML that doesn't return results)
spark.read.jdbc(
    url=jdbc_url,
    table="(SELECT 1 as result) t",
    properties=properties
)

# For Databricks tables
spark.sql("TRUNCATE TABLE staging.orders")
spark.sql(f"INSERT INTO log VALUES (current_timestamp(), 'Started')")

# For complex SQL execution
from py4j.java_gateway import java_import
java_import(spark._jvm, "java.sql.DriverManager")

def execute_sql(jdbc_url, sql, user, password):
    """Execute SQL statement on remote database."""
    connection = spark._jvm.DriverManager.getConnection(jdbc_url, user, password)
    statement = connection.createStatement()
    statement.execute(sql)
    statement.close()
    connection.close()

execute_sql(jdbc_url, "TRUNCATE TABLE staging.orders",
            dbutils.secrets.get("scope", "sql_user"),
            dbutils.secrets.get("scope", "sql_password"))

3.2 For Loop Container
<!-- SSIS: For Loop Container -->
<!-- InitExpression: @Counter = 1 -->
<!-- EvalExpression: @Counter <= 12 -->
<!-- AssignExpression: @Counter = @Counter + 1 -->

# Databricks equivalent
for month in range(1, 13):
    print(f"Processing month {month}")

    # Process data for each month
    monthly_data = spark.sql(f"""
        SELECT *
        FROM source.transactions
        WHERE MONTH(transaction_date) = {month}
    """)

    monthly_data.write.mode("overwrite").saveAsTable(f"staging.transactions_month_{month:02d}")

# Or using date ranges
from datetime import date, timedelta
from dateutil.relativedelta import relativedelta

start_date = date(2025, 1, 1)
for i in range(12):
    current_month = start_date + relativedelta(months=i)
    next_month = current_month + relativedelta(months=1)

    monthly_data = spark.sql(f"""
        SELECT *
        FROM source.transactions
        WHERE transaction_date >= '{current_month}'
          AND transaction_date < '{next_month}'
    """)

    table_name = f"staging.transactions_{current_month.strftime('%Y_%m')}"
    monthly_data.write.mode("overwrite").saveAsTable(table_name)

3.3 Foreach Loop Container
<!-- SSIS: Foreach Loop Container -->
<!-- Enumerator: Foreach File Enumerator -->
<!-- Folder: C:\Landing\Files -->
<!-- Files: *.csv -->

# Databricks equivalent - Process files in folder
files = dbutils.fs.ls("/mnt/landing/files/")
csv_files = [f.path for f in files if f.path.endswith(".csv")]

for file_path in csv_files:
    print(f"Processing: {file_path}")

    df = spark.read.csv(file_path, header=True, inferSchema=True)
    df = df.withColumn("source_file", F.lit(file_path))
    df = df.withColumn("load_timestamp", F.current_timestamp())

    df.write.mode("append").saveAsTable("bronze.raw_data")

# Better approach: Use Auto Loader for automatic file processing
auto_loader_df = (spark.readStream
    .format("cloudFiles")
    .option("cloudFiles.format", "csv")
    .option("cloudFiles.schemaLocation", "/checkpoints/schema")
    .option("header", "true")
    .load("/mnt/landing/files/")
    .withColumn("source_file", F.input_file_name())
    .withColumn("load_timestamp", F.current_timestamp())
)

(auto_loader_df.writeStream
    .format("delta")
    .option("checkpointLocation", "/checkpoints/raw_data")
    .trigger(availableNow=True)
    .toTable("bronze.raw_data")
)

# Parallel processing using Databricks job tasks
# Define in job configuration for parallel file processing

3.4 Sequence Container
<!-- SSIS: Sequence Container grouping related tasks -->
<!-- Task 1: Execute SQL - Truncate staging -->
<!-- Task 2: Data Flow - Load data -->
<!-- Task 3: Execute SQL - Update log -->

# Databricks equivalent - Group operations in function
def process_orders_sequence():
    """Sequence container equivalent - grouped operations."""

    # Task 1: Truncate staging
    spark.sql("TRUNCATE TABLE staging.orders")
    print("Staging table truncated")

    # Task 2: Load data
    source_df = spark.table("bronze.orders_raw")
    transformed_df = transform_orders(source_df)
    transformed_df.write.mode("overwrite").saveAsTable("staging.orders")
    print(f"Loaded {transformed_df.count()} records")

    # Task 3: Update log
    spark.sql("""
        INSERT INTO process_log (process_name, status, record_count, timestamp)
        VALUES ('orders_load', 'SUCCESS', {count}, current_timestamp())
    """.format(count=transformed_df.count()))
    print("Log updated")

    return transformed_df.count()

# Execute sequence
record_count = process_orders_sequence()

3.5 Conditional Tasks (Precedence Constraints)
<!-- SSIS: Precedence Constraint with Expression -->
<!-- Expression: @[User::RowCount] > 0 -->
<!-- Constraint: Success -->

# Databricks equivalent - Using Python conditionals

# Store row count from previous task
row_count = previous_df.count()
dbutils.jobs.taskValues.set(key="row_count", value=row_count)

# In downstream task, check condition
previous_count = dbutils.jobs.taskValues.get(
    taskKey="load_data",
    key="row_count",
    default=0
)

if previous_count > 0:
    # Execute downstream logic
    process_downstream_data()
else:
    print("No records to process, skipping downstream tasks")
    dbutils.notebook.exit("SKIPPED")

# In Databricks Job - use condition task
# Job definition:
job_task = {
    "task_key": "conditional_task",
    "depends_on": [{"task_key": "load_data"}],
    "condition_task": {
        "op": "GREATER_THAN",
        "left": "{{tasks.load_data.values.row_count}}",
        "right": "0"
    }
}

________________________________________________________________________________
4. Data Flow Migration
4.1 OLE DB Source to Spark
<!-- SSIS: OLE DB Source -->
<!-- Connection: SQL Server -->
<!-- SQL Command: SELECT * FROM dbo.Orders WHERE OrderDate >= ? -->
<!-- Parameter: @StartDate -->

# Databricks equivalent
jdbc_url = "jdbc:sqlserver://server:1433;database=mydb"
start_date = dbutils.widgets.get("start_date")

# Method 1: Using query pushdown
orders_df = (spark.read
    .format("jdbc")
    .option("url", jdbc_url)
    .option("dbtable", f"(SELECT * FROM dbo.Orders WHERE OrderDate >= '{start_date}') as t")
    .option("user", dbutils.secrets.get("scope", "user"))
    .option("password", dbutils.secrets.get("scope", "password"))
    .option("driver", "com.microsoft.sqlserver.jdbc.SQLServerDriver")
    # Performance options
    .option("fetchsize", "10000")
    .option("partitionColumn", "OrderID")
    .option("lowerBound", "1")
    .option("upperBound", "1000000")
    .option("numPartitions", "10")
    .load()
)

# Method 2: Using Lakehouse Federation (if configured)
orders_df = spark.sql(f"""
    SELECT * FROM sqlserver_catalog.mydb.dbo.Orders
    WHERE OrderDate >= '{start_date}'
""")

4.2 Derived Column Transformation
<!-- SSIS: Derived Column -->
<!-- FullName = FirstName + " " + LastName -->
<!-- OrderYear = YEAR(OrderDate) -->
<!-- TotalAmount = Quantity * UnitPrice * (1 - Discount) -->
<!-- StatusFlag = OrderStatus == "Shipped" ? 1 : 0 -->

# Databricks equivalent
transformed_df = (source_df
    # String concatenation
    .withColumn("FullName", F.concat_ws(" ", "FirstName", "LastName"))

    # Date extraction
    .withColumn("OrderYear", F.year("OrderDate"))

    # Mathematical calculation
    .withColumn("TotalAmount",
        F.col("Quantity") * F.col("UnitPrice") * (1 - F.col("Discount"))
    )

    # Conditional (ternary operator equivalent)
    .withColumn("StatusFlag",
        F.when(F.col("OrderStatus") == "Shipped", 1).otherwise(0)
    )

    # NULL handling (SSIS ISNULL equivalent)
    .withColumn("SafeDiscount", F.coalesce(F.col("Discount"), F.lit(0)))

    # Type conversion
    .withColumn("AmountStr", F.col("TotalAmount").cast("string"))

    # Date formatting
    .withColumn("OrderDateStr", F.date_format("OrderDate", "yyyy-MM-dd"))
)

4.3 Lookup Transformation
<!-- SSIS: Lookup Transformation -->
<!-- Connection: OLE DB -->
<!-- Table: dbo.Products -->
<!-- Columns: ProductID -> ProductName, CategoryID -->
<!-- No Match: Redirect to error output -->

# Databricks equivalent
# Load lookup table
products_lookup = (spark.table("dim.products")
    .select("ProductID", "ProductName", "CategoryID")
)

# Perform lookup (left join for potential no-match)
result_df = source_df.join(
    F.broadcast(products_lookup),  # Broadcast for small lookup tables
    "ProductID",
    "left"
)

# Handle no-match (redirect equivalent)
matched_df = result_df.filter(F.col("ProductName").isNotNull())
unmatched_df = result_df.filter(F.col("ProductName").isNull())

# Write matched records
matched_df.write.saveAsTable("staging.orders_enriched")

# Write unmatched to error table
if unmatched_df.count() > 0:
    (unmatched_df
        .withColumn("_error_reason", F.lit("Product not found"))
        .withColumn("_error_timestamp", F.current_timestamp())
        .write.mode("append")
        .saveAsTable("error.orders_lookup_failures")
    )

4.4 Conditional Split
<!-- SSIS: Conditional Split -->
<!-- High Value: Amount > 10000 -->
<!-- Medium Value: Amount > 1000 AND Amount <= 10000 -->
<!-- Low Value: Amount <= 1000 -->

# Databricks equivalent
# Method 1: Multiple DataFrames
high_value_df = source_df.filter(F.col("Amount") > 10000)
medium_value_df = source_df.filter(
    (F.col("Amount") > 1000) & (F.col("Amount") <= 10000)
)
low_value_df = source_df.filter(F.col("Amount") <= 1000)

# Write to different destinations
high_value_df.write.saveAsTable("staging.high_value_orders")
medium_value_df.write.saveAsTable("staging.medium_value_orders")
low_value_df.write.saveAsTable("staging.low_value_orders")

# Method 2: Add classification column and partition
classified_df = (source_df
    .withColumn("ValueTier",
        F.when(F.col("Amount") > 10000, "HIGH")
        .when(F.col("Amount") > 1000, "MEDIUM")
        .otherwise("LOW")
    )
)

# Write partitioned by classification
(classified_df.write
    .partitionBy("ValueTier")
    .saveAsTable("staging.orders_classified")
)

4.5 Aggregate Transformation
<!-- SSIS: Aggregate -->
<!-- Group By: CustomerID, Year(OrderDate) -->
<!-- Aggregations: SUM(Amount), COUNT(*), AVG(Quantity) -->

# Databricks equivalent
aggregated_df = (source_df
    .withColumn("OrderYear", F.year("OrderDate"))
    .groupBy("CustomerID", "OrderYear")
    .agg(
        F.sum("Amount").alias("TotalAmount"),
        F.count("*").alias("OrderCount"),
        F.avg("Quantity").alias("AvgQuantity"),
        F.min("OrderDate").alias("FirstOrder"),
        F.max("OrderDate").alias("LastOrder")
    )
)

4.6 Sort Transformation
<!-- SSIS: Sort -->
<!-- Sort Keys: CustomerID ASC, OrderDate DESC -->
<!-- Remove duplicates: Yes -->

# Databricks equivalent
sorted_df = (source_df
    .orderBy(
        F.col("CustomerID").asc(),
        F.col("OrderDate").desc()
    )
    .dropDuplicates(["CustomerID", "OrderDate"])  # Remove duplicates
)

# For large datasets, avoid full sort if possible
# Use window functions for ordering within groups
window_spec = Window.partitionBy("CustomerID").orderBy(F.col("OrderDate").desc())

deduplicated_df = (source_df
    .withColumn("_row_num", F.row_number().over(window_spec))
    .filter(F.col("_row_num") == 1)
    .drop("_row_num")
)

4.7 Merge Join
<!-- SSIS: Merge Join -->
<!-- Join Type: Left Outer -->
<!-- Left Input: Orders (sorted by CustomerID) -->
<!-- Right Input: Customers (sorted by CustomerID) -->

# Databricks equivalent
# Note: Spark handles join optimization automatically
# No need for pre-sorting (Spark will sort if needed for sort-merge join)

joined_df = orders_df.join(
    customers_df,
    orders_df.CustomerID == customers_df.CustomerID,
    "left"  # Left outer join
)

# Select specific columns to avoid duplicates
result_df = joined_df.select(
    orders_df["*"],
    customers_df["CustomerName"],
    customers_df["Email"]
)

4.8 Union All
<!-- SSIS: Union All -->
<!-- Input 1: CurrentYearOrders -->
<!-- Input 2: PreviousYearOrders -->

# Databricks equivalent
# Union with same schema
combined_df = current_year_orders.union(previous_year_orders)

# Union with different column names (align schemas)
combined_df = current_year_orders.unionByName(
    previous_year_orders,
    allowMissingColumns=True  # Handle schema differences
)

# Multiple unions
from functools import reduce

dataframes = [df_2023, df_2024, df_2025]
combined_df = reduce(lambda a, b: a.unionByName(b, allowMissingColumns=True), dataframes)

________________________________________________________________________________
5. Connection Manager Migration
5.1 SQL Server Connection
# SSIS Connection Manager -> Databricks Secret Scope

# Create secret scope (one-time setup via CLI)
# databricks secrets create-scope --scope sql-server

# Store secrets
# databricks secrets put --scope sql-server --key host
# databricks secrets put --scope sql-server --key database
# databricks secrets put --scope sql-server --key user
# databricks secrets put --scope sql-server --key password

# Use in notebook
def get_sqlserver_connection():
    """Get SQL Server connection configuration."""
    return {
        "url": f"jdbc:sqlserver://{dbutils.secrets.get('sql-server', 'host')}:1433;database={dbutils.secrets.get('sql-server', 'database')}",
        "user": dbutils.secrets.get("sql-server", "user"),
        "password": dbutils.secrets.get("sql-server", "password"),
        "driver": "com.microsoft.sqlserver.jdbc.SQLServerDriver"
    }

# Read from SQL Server
config = get_sqlserver_connection()
df = (spark.read
    .format("jdbc")
    .option("url", config["url"])
    .option("dbtable", "dbo.Orders")
    .option("user", config["user"])
    .option("password", config["password"])
    .option("driver", config["driver"])
    .load()
)

5.2 Flat File Connection
# SSIS Flat File Connection Manager -> Spark read options

# CSV file with specific configuration
df = (spark.read
    .format("csv")
    .option("header", "true")
    .option("delimiter", "|")
    .option("quote", '"')
    .option("escape", "\\")
    .option("encoding", "UTF-8")
    .option("dateFormat", "yyyy-MM-dd")
    .option("timestampFormat", "yyyy-MM-dd HH:mm:ss")
    .option("nullValue", "NULL")
    .option("mode", "PERMISSIVE")
    .option("columnNameOfCorruptRecord", "_corrupt_record")
    .schema(defined_schema)  # Optional: define schema
    .load("/mnt/landing/data.csv")
)

# Fixed-width file
# Use substring to parse fixed-width columns
fixed_width_df = (spark.read
    .text("/mnt/landing/fixed_width.txt")
    .select(
        F.substring("value", 1, 10).alias("field1"),
        F.substring("value", 11, 20).alias("field2"),
        F.substring("value", 31, 10).alias("field3")
    )
)

________________________________________________________________________________
6. Variable and Parameter Migration
6.1 Package Variables
# SSIS Package Variables -> Databricks equivalents

# Option 1: Notebook widgets (interactive)
dbutils.widgets.text("process_date", "", "Process Date")
dbutils.widgets.dropdown("environment", "dev", ["dev", "staging", "prod"])

process_date = dbutils.widgets.get("process_date")
environment = dbutils.widgets.get("environment")

# Option 2: Job parameters (scheduled jobs)
# Access via spark.conf
process_date = spark.conf.get("process_date", str(date.today()))
environment = spark.conf.get("environment", "dev")

# Option 3: Environment variables
import os
process_date = os.environ.get("PROCESS_DATE", str(date.today()))

# Option 4: Task values (pass between tasks in a job)
# Set in task
dbutils.jobs.taskValues.set(key="row_count", value=1000)
dbutils.jobs.taskValues.set(key="status", value="SUCCESS")

# Get in downstream task
row_count = dbutils.jobs.taskValues.get(
    taskKey="previous_task",
    key="row_count",
    default=0
)

6.2 Package Expressions
# SSIS Expression equivalents in Python

# Date expressions
from datetime import datetime, timedelta

today = datetime.now().date()
yesterday = today - timedelta(days=1)
first_of_month = today.replace(day=1)
last_month = (first_of_month - timedelta(days=1)).replace(day=1)

# String expressions
file_name = f"orders_{today.strftime('%Y%m%d')}.csv"
table_name = f"staging.orders_{today.strftime('%Y_%m')}"

# Dynamic SQL
query = f"""
    SELECT *
    FROM orders
    WHERE order_date = '{yesterday}'
"""

# Configuration-based logic
if environment == "prod":
    connection_string = prod_connection
    max_errors = 10
else:
    connection_string = dev_connection
    max_errors = 100

________________________________________________________________________________
7. Error Handling Migration
7.1 OnError Event Handler
# SSIS OnError Event Handler -> Databricks try/except

def process_orders_with_error_handling():
    """Process orders with comprehensive error handling."""
    try:
        # Main processing logic
        source_df = spark.table("bronze.orders")
        transformed_df = transform_orders(source_df)
        transformed_df.write.saveAsTable("silver.orders")

        # Log success
        log_process_status("orders_etl", "SUCCESS", transformed_df.count())
        return True

    except Exception as e:
        # Log failure
        log_process_status("orders_etl", "FAILED", 0, str(e))

        # Send notification
        send_error_notification("orders_etl", str(e))

        # Re-raise or handle
        raise

def log_process_status(process_name, status, record_count, error_message=None):
    """Log process status to audit table."""
    spark.sql(f"""
        INSERT INTO audit.process_log
        VALUES (
            '{process_name}',
            '{status}',
            {record_count},
            {f"'{error_message}'" if error_message else "NULL"},
            current_timestamp()
        )
    """)

def send_error_notification(process_name, error_message):
    """Send error notification (webhook, email, etc.)."""
    import requests

    webhook_url = dbutils.secrets.get("scope", "slack_webhook")
    requests.post(webhook_url, json={
        "text": f"ETL Failed: {process_name}\nError: {error_message}"
    })

7.2 Row-Level Error Handling
# SSIS Error Output -> Databricks error handling

def process_with_row_level_errors(source_df, target_table, error_table):
    """Process data with row-level error handling."""

    # Add validation columns
    validated_df = (source_df
        .withColumn("_is_valid",
            (F.col("customer_id").isNotNull()) &
            (F.col("amount") > 0) &
            (F.col("order_date").isNotNull())
        )
        .withColumn("_error_reason",
            F.when(F.col("customer_id").isNull(), "Null customer_id")
            .when(F.col("amount") <= 0, "Invalid amount")
            .when(F.col("order_date").isNull(), "Null order_date")
            .otherwise(None)
        )
    )

    # Split into good and error records
    good_records = validated_df.filter(F.col("_is_valid")).drop("_is_valid", "_error_reason")
    error_records = validated_df.filter(~F.col("_is_valid")).drop("_is_valid")

    # Write good records
    good_records.write.mode("append").saveAsTable(target_table)

    # Write error records
    if error_records.count() > 0:
        (error_records
            .withColumn("_error_timestamp", F.current_timestamp())
            .withColumn("_source_system", F.lit("orders_etl"))
            .write.mode("append")
            .saveAsTable(error_table)
        )

    return good_records.count(), error_records.count()

# Usage
good_count, error_count = process_with_row_level_errors(
    source_df,
    "silver.orders",
    "error.orders_errors"
)
print(f"Processed: {good_count} good, {error_count} errors")

________________________________________________________________________________
8. Orchestration Migration
8.1 SSIS Package to Databricks Job
# Databricks Job definition (equivalent to SSIS package)
job_config = {
    "name": "Orders_ETL_Pipeline",
    "tags": {
        "migrated_from": "SSIS",
        "original_package": "Orders_Load.dtsx"
    },
    "schedule": {
        "quartz_cron_expression": "0 0 6 * * ?",  # Daily at 6 AM
        "timezone_id": "America/New_York"
    },
    "tasks": [
        {
            "task_key": "truncate_staging",
            "notebook_task": {
                "notebook_path": "/Jobs/Orders/01_truncate_staging"
            }
        },
        {
            "task_key": "extract_orders",
            "depends_on": [{"task_key": "truncate_staging"}],
            "notebook_task": {
                "notebook_path": "/Jobs/Orders/02_extract_orders",
                "base_parameters": {
                    "source_date": "{{job.start_time.iso_date}}"
                }
            }
        },
        {
            "task_key": "transform_orders",
            "depends_on": [{"task_key": "extract_orders"}],
            "notebook_task": {
                "notebook_path": "/Jobs/Orders/03_transform_orders"
            }
        },
        {
            "task_key": "load_dimensions",
            "depends_on": [{"task_key": "transform_orders"}],
            "notebook_task": {
                "notebook_path": "/Jobs/Orders/04_load_dimensions"
            }
        },
        {
            "task_key": "load_facts",
            "depends_on": [{"task_key": "load_dimensions"}],
            "notebook_task": {
                "notebook_path": "/Jobs/Orders/05_load_facts"
            }
        },
        {
            "task_key": "update_log",
            "depends_on": [
                {"task_key": "load_facts"}
            ],
            "notebook_task": {
                "notebook_path": "/Jobs/Orders/06_update_log"
            }
        }
    ],
    "email_notifications": {
        "on_failure": ["team@company.com"],
        "on_success": ["reports@company.com"]
    },
    "max_concurrent_runs": 1
}

________________________________________________________________________________
9. Migration Validation
9.1 Data Reconciliation
def reconcile_ssis_databricks(
    ssis_export_path: str,
    databricks_table: str,
    key_columns: list,
    tolerance: float = 0.001
) -> dict:
    """
    Compare SSIS output with Databricks output.

    Args:
        ssis_export_path: Path to SSIS exported data
        databricks_table: Databricks table name
        key_columns: Columns to use as join keys
        tolerance: Numeric comparison tolerance

    Returns:
        Reconciliation results
    """
    # Load SSIS export
    ssis_df = spark.read.parquet(ssis_export_path)

    # Load Databricks output
    db_df = spark.table(databricks_table)

    # Row count comparison
    ssis_count = ssis_df.count()
    db_count = db_df.count()

    # Find differences
    ssis_only = ssis_df.join(db_df, key_columns, "left_anti")
    db_only = db_df.join(ssis_df, key_columns, "left_anti")

    results = {
        "ssis_count": ssis_count,
        "databricks_count": db_count,
        "count_match": ssis_count == db_count,
        "ssis_only": ssis_only.count(),
        "databricks_only": db_only.count(),
        "reconciled": ssis_count == db_count and ssis_only.count() == 0
    }

    return results

________________________________________________________________________________
10. Migration Checklist
10.1 Pre-Migration
[ ] Inventory all SSIS packages
[ ] Document control flow logic
[ ] Document data flow transformations
[ ] Identify connection managers and credentials
[ ] Map variables and parameters
10.2 During Migration
[ ] Convert control flow to Databricks jobs
[ ] Convert data flows to notebooks
[ ] Migrate connection strings to secret scopes
[ ] Implement error handling
[ ] Add logging and monitoring
10.3 Post-Migration
[ ] Run parallel execution tests
[ ] Compare output data
[ ] Validate row counts and checksums
[ ] Performance comparison
[ ] Update operational documentation
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