SSIS to Databricks Migration Guide
Document Information
Version: 1.0
Last Updated: 2025-01-24
Classification: Internal Use
Owner: Data Engineering Team
__
1. Executive Summary
This guide provides comprehensive patterns for migrating SQL Server Integration Services (SSIS) packages to Databricks. It covers task mapping, data flow conversions, control flow patterns, and orchestration strategies.
__
2. Conceptual Mapping
2.1 Component Mapping
	SSIS Concept
	Databricks Equivalent

	Package
	Notebook / Job

	Control Flow
	Job Tasks / Workflow

	Data Flow Task
	DataFrame transformations

	Execute SQL Task
	spark.sql()

	Script Task
	Python code in notebook

	For Loop Container
	Python for loop

	Foreach Loop Container
	Python iteration / parallel tasks

	Sequence Container
	Task group in Job

	OLE DB Source
	spark.read.jdbc()

	OLE DB Destination
	DataFrame.write.jdbc() / Delta

	Flat File Source
	spark.read.csv()

	Lookup
	DataFrame join

	Derived Column
	withColumn()

	Conditional Split
	filter() / Router pattern

	Sort
	orderBy()

	Aggregate
	groupBy().agg()

	Merge Join
	join()

	Union All
	union() / unionByName()

	Variables
	Notebook widgets / Task values

	Parameters
	Job parameters

	Connection Manager
	Secrets + JDBC config

2.2 Architecture Comparison
┌───┐
│ SSIS vs DATABRICKS ARCHITECTURE │
├───┤
│ │
│ SSIS DATABRICKS │
│ ┌─────────────────────────┐ ┌─────────────────────────┐ │
│ │ SSIS Package │ │ Databricks Job │ │
│ │ ┌─────────────────┐ │ │ ┌─────────────────┐ │ │
│ │ │ Control Flow │ │ │ │ Job Tasks │ │ │
│ │ │ (Orchestration)│ │ ──────▶ │ │ (Orchestration)│ │ │
│ │ └─────────────────┘ │ │ └─────────────────┘ │ │
│ │ ┌─────────────────┐ │ │ ┌─────────────────┐ │ │
│ │ │ Data Flow │ │ │ │ Notebooks │ │ │
│ │ │ (Transform) │ │ ──────▶ │ │ (Transform) │ │ │
│ │ └─────────────────┘ │ │ └─────────────────┘ │ │
│ │ ┌─────────────────┐ │ │ ┌─────────────────┐ │ │
│ │ │ Variables │ │ │ │ Task Values / │ │ │
│ │ │ Parameters │ │ ──────▶ │ │ Parameters │ │ │
│ │ └─────────────────┘ │ │ └─────────────────┘ │ │
│ │ ┌─────────────────┐ │ │ ┌─────────────────┐ │ │
│ │ │ Connections │ │ │ │ Secrets │ │ │
│ │ │ Managers │ │ ──────▶ │ │ + JDBC URLs │ │ │
│ │ └─────────────────┘ │ │ └─────────────────┘ │ │
│ └─────────────────────────┘ └─────────────────────────┘ │
│ │
└───┘

__
3. Control Flow Migration
3.1 Execute SQL Task
-- SSIS: Execute SQL Task
-- Connection: OLE DB to SQL Server
-- SQL Statement: TRUNCATE TABLE staging.orders; INSERT INTO log VALUES(GETDATE(), 'Started')

Databricks equivalent
Execute against SQL Server
jdbc_url = "jdbc:sqlserver://server:1433;database=mydb"
properties = {
 "user": dbutils.secrets.get("scope", "sql_user"),
 "password": dbutils.secrets.get("scope", "sql_password"),
 "driver": "com.microsoft.sqlserver.jdbc.SQLServerDriver"
}

Execute SQL (for DDL/DML that doesn't return results)
spark.read.jdbc(
 url=jdbc_url,
 table="(SELECT 1 as result) t",
 properties=properties
)

For Databricks tables
spark.sql("TRUNCATE TABLE staging.orders")
spark.sql(f"INSERT INTO log VALUES (current_timestamp(), 'Started')")

For complex SQL execution
from py4j.java_gateway import java_import
java_import(spark._jvm, "java.sql.DriverManager")

def execute_sql(jdbc_url, sql, user, password):
 """Execute SQL statement on remote database."""
 connection = spark._jvm.DriverManager.getConnection(jdbc_url, user, password)
 statement = connection.createStatement()
 statement.execute(sql)
 statement.close()
 connection.close()

execute_sql(jdbc_url, "TRUNCATE TABLE staging.orders",
 dbutils.secrets.get("scope", "sql_user"),
 dbutils.secrets.get("scope", "sql_password"))

3.2 For Loop Container
<!-- SSIS: For Loop Container -->
<!-- InitExpression: @Counter = 1 -->
<!-- EvalExpression: @Counter <= 12 -->
<!-- AssignExpression: @Counter = @Counter + 1 -->

Databricks equivalent
for month in range(1, 13):
 print(f"Processing month {month}")

 # Process data for each month
 monthly_data = spark.sql(f"""
 SELECT *
 FROM source.transactions
 WHERE MONTH(transaction_date) = {month}
 """)

 monthly_data.write.mode("overwrite").saveAsTable(f"staging.transactions_month_{month:02d}")

Or using date ranges
from datetime import date, timedelta
from dateutil.relativedelta import relativedelta

start_date = date(2025, 1, 1)
for i in range(12):
 current_month = start_date + relativedelta(months=i)
 next_month = current_month + relativedelta(months=1)

 monthly_data = spark.sql(f"""
 SELECT *
 FROM source.transactions
 WHERE transaction_date >= '{current_month}'
 AND transaction_date < '{next_month}'
 """)

 table_name = f"staging.transactions_{current_month.strftime('%Y_%m')}"
 monthly_data.write.mode("overwrite").saveAsTable(table_name)

3.3 Foreach Loop Container
<!-- SSIS: Foreach Loop Container -->
<!-- Enumerator: Foreach File Enumerator -->
<!-- Folder: C:\Landing\Files -->
<!-- Files: *.csv -->

Databricks equivalent - Process files in folder
files = dbutils.fs.ls("/mnt/landing/files/")
csv_files = [f.path for f in files if f.path.endswith(".csv")]

for file_path in csv_files:
 print(f"Processing: {file_path}")

 df = spark.read.csv(file_path, header=True, inferSchema=True)
 df = df.withColumn("source_file", F.lit(file_path))
 df = df.withColumn("load_timestamp", F.current_timestamp())

 df.write.mode("append").saveAsTable("bronze.raw_data")

Better approach: Use Auto Loader for automatic file processing
auto_loader_df = (spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "csv")
 .option("cloudFiles.schemaLocation", "/checkpoints/schema")
 .option("header", "true")
 .load("/mnt/landing/files/")
 .withColumn("source_file", F.input_file_name())
 .withColumn("load_timestamp", F.current_timestamp())
)

(auto_loader_df.writeStream
 .format("delta")
 .option("checkpointLocation", "/checkpoints/raw_data")
 .trigger(availableNow=True)
 .toTable("bronze.raw_data")
)

Parallel processing using Databricks job tasks
Define in job configuration for parallel file processing

3.4 Sequence Container
<!-- SSIS: Sequence Container grouping related tasks -->
<!-- Task 1: Execute SQL - Truncate staging -->
<!-- Task 2: Data Flow - Load data -->
<!-- Task 3: Execute SQL - Update log -->

Databricks equivalent - Group operations in function
def process_orders_sequence():
 """Sequence container equivalent - grouped operations."""

 # Task 1: Truncate staging
 spark.sql("TRUNCATE TABLE staging.orders")
 print("Staging table truncated")

 # Task 2: Load data
 source_df = spark.table("bronze.orders_raw")
 transformed_df = transform_orders(source_df)
 transformed_df.write.mode("overwrite").saveAsTable("staging.orders")
 print(f"Loaded {transformed_df.count()} records")

 # Task 3: Update log
 spark.sql("""
 INSERT INTO process_log (process_name, status, record_count, timestamp)
 VALUES ('orders_load', 'SUCCESS', {count}, current_timestamp())
 """.format(count=transformed_df.count()))
 print("Log updated")

 return transformed_df.count()

Execute sequence
record_count = process_orders_sequence()

3.5 Conditional Tasks (Precedence Constraints)
<!-- SSIS: Precedence Constraint with Expression -->
<!-- Expression: @[User::RowCount] > 0 -->
<!-- Constraint: Success -->

Databricks equivalent - Using Python conditionals

Store row count from previous task
row_count = previous_df.count()
dbutils.jobs.taskValues.set(key="row_count", value=row_count)

In downstream task, check condition
previous_count = dbutils.jobs.taskValues.get(
 taskKey="load_data",
 key="row_count",
 default=0
)

if previous_count > 0:
 # Execute downstream logic
 process_downstream_data()
else:
 print("No records to process, skipping downstream tasks")
 dbutils.notebook.exit("SKIPPED")

In Databricks Job - use condition task
Job definition:
job_task = {
 "task_key": "conditional_task",
 "depends_on": [{"task_key": "load_data"}],
 "condition_task": {
 "op": "GREATER_THAN",
 "left": "{{tasks.load_data.values.row_count}}",
 "right": "0"
 }
}

__
4. Data Flow Migration
4.1 OLE DB Source to Spark
<!-- SSIS: OLE DB Source -->
<!-- Connection: SQL Server -->
<!-- SQL Command: SELECT * FROM dbo.Orders WHERE OrderDate >= ? -->
<!-- Parameter: @StartDate -->

Databricks equivalent
jdbc_url = "jdbc:sqlserver://server:1433;database=mydb"
start_date = dbutils.widgets.get("start_date")

Method 1: Using query pushdown
orders_df = (spark.read
 .format("jdbc")
 .option("url", jdbc_url)
 .option("dbtable", f"(SELECT * FROM dbo.Orders WHERE OrderDate >= '{start_date}') as t")
 .option("user", dbutils.secrets.get("scope", "user"))
 .option("password", dbutils.secrets.get("scope", "password"))
 .option("driver", "com.microsoft.sqlserver.jdbc.SQLServerDriver")
 # Performance options
 .option("fetchsize", "10000")
 .option("partitionColumn", "OrderID")
 .option("lowerBound", "1")
 .option("upperBound", "1000000")
 .option("numPartitions", "10")
 .load()
)

Method 2: Using Lakehouse Federation (if configured)
orders_df = spark.sql(f"""
 SELECT * FROM sqlserver_catalog.mydb.dbo.Orders
 WHERE OrderDate >= '{start_date}'
""")

4.2 Derived Column Transformation
<!-- SSIS: Derived Column -->
<!-- FullName = FirstName + " " + LastName -->
<!-- OrderYear = YEAR(OrderDate) -->
<!-- TotalAmount = Quantity * UnitPrice * (1 - Discount) -->
<!-- StatusFlag = OrderStatus == "Shipped" ? 1 : 0 -->

Databricks equivalent
transformed_df = (source_df
 # String concatenation
 .withColumn("FullName", F.concat_ws(" ", "FirstName", "LastName"))

 # Date extraction
 .withColumn("OrderYear", F.year("OrderDate"))

 # Mathematical calculation
 .withColumn("TotalAmount",
 F.col("Quantity") * F.col("UnitPrice") * (1 - F.col("Discount"))
)

 # Conditional (ternary operator equivalent)
 .withColumn("StatusFlag",
 F.when(F.col("OrderStatus") == "Shipped", 1).otherwise(0)
)

 # NULL handling (SSIS ISNULL equivalent)
 .withColumn("SafeDiscount", F.coalesce(F.col("Discount"), F.lit(0)))

 # Type conversion
 .withColumn("AmountStr", F.col("TotalAmount").cast("string"))

 # Date formatting
 .withColumn("OrderDateStr", F.date_format("OrderDate", "yyyy-MM-dd"))
)

4.3 Lookup Transformation
<!-- SSIS: Lookup Transformation -->
<!-- Connection: OLE DB -->
<!-- Table: dbo.Products -->
<!-- Columns: ProductID -> ProductName, CategoryID -->
<!-- No Match: Redirect to error output -->

Databricks equivalent
Load lookup table
products_lookup = (spark.table("dim.products")
 .select("ProductID", "ProductName", "CategoryID")
)

Perform lookup (left join for potential no-match)
result_df = source_df.join(
 F.broadcast(products_lookup), # Broadcast for small lookup tables
 "ProductID",
 "left"
)

Handle no-match (redirect equivalent)
matched_df = result_df.filter(F.col("ProductName").isNotNull())
unmatched_df = result_df.filter(F.col("ProductName").isNull())

Write matched records
matched_df.write.saveAsTable("staging.orders_enriched")

Write unmatched to error table
if unmatched_df.count() > 0:
 (unmatched_df
 .withColumn("_error_reason", F.lit("Product not found"))
 .withColumn("_error_timestamp", F.current_timestamp())
 .write.mode("append")
 .saveAsTable("error.orders_lookup_failures")
)

4.4 Conditional Split
<!-- SSIS: Conditional Split -->
<!-- High Value: Amount > 10000 -->
<!-- Medium Value: Amount > 1000 AND Amount <= 10000 -->
<!-- Low Value: Amount <= 1000 -->

Databricks equivalent
Method 1: Multiple DataFrames
high_value_df = source_df.filter(F.col("Amount") > 10000)
medium_value_df = source_df.filter(
 (F.col("Amount") > 1000) & (F.col("Amount") <= 10000)
)
low_value_df = source_df.filter(F.col("Amount") <= 1000)

Write to different destinations
high_value_df.write.saveAsTable("staging.high_value_orders")
medium_value_df.write.saveAsTable("staging.medium_value_orders")
low_value_df.write.saveAsTable("staging.low_value_orders")

Method 2: Add classification column and partition
classified_df = (source_df
 .withColumn("ValueTier",
 F.when(F.col("Amount") > 10000, "HIGH")
 .when(F.col("Amount") > 1000, "MEDIUM")
 .otherwise("LOW")
)
)

Write partitioned by classification
(classified_df.write
 .partitionBy("ValueTier")
 .saveAsTable("staging.orders_classified")
)

4.5 Aggregate Transformation
<!-- SSIS: Aggregate -->
<!-- Group By: CustomerID, Year(OrderDate) -->
<!-- Aggregations: SUM(Amount), COUNT(*), AVG(Quantity) -->

Databricks equivalent
aggregated_df = (source_df
 .withColumn("OrderYear", F.year("OrderDate"))
 .groupBy("CustomerID", "OrderYear")
 .agg(
 F.sum("Amount").alias("TotalAmount"),
 F.count("*").alias("OrderCount"),
 F.avg("Quantity").alias("AvgQuantity"),
 F.min("OrderDate").alias("FirstOrder"),
 F.max("OrderDate").alias("LastOrder")
)
)

4.6 Sort Transformation
<!-- SSIS: Sort -->
<!-- Sort Keys: CustomerID ASC, OrderDate DESC -->
<!-- Remove duplicates: Yes -->

Databricks equivalent
sorted_df = (source_df
 .orderBy(
 F.col("CustomerID").asc(),
 F.col("OrderDate").desc()
)
 .dropDuplicates(["CustomerID", "OrderDate"]) # Remove duplicates
)

For large datasets, avoid full sort if possible
Use window functions for ordering within groups
window_spec = Window.partitionBy("CustomerID").orderBy(F.col("OrderDate").desc())

deduplicated_df = (source_df
 .withColumn("_row_num", F.row_number().over(window_spec))
 .filter(F.col("_row_num") == 1)
 .drop("_row_num")
)

4.7 Merge Join
<!-- SSIS: Merge Join -->
<!-- Join Type: Left Outer -->
<!-- Left Input: Orders (sorted by CustomerID) -->
<!-- Right Input: Customers (sorted by CustomerID) -->

Databricks equivalent
Note: Spark handles join optimization automatically
No need for pre-sorting (Spark will sort if needed for sort-merge join)

joined_df = orders_df.join(
 customers_df,
 orders_df.CustomerID == customers_df.CustomerID,
 "left" # Left outer join
)

Select specific columns to avoid duplicates
result_df = joined_df.select(
 orders_df["*"],
 customers_df["CustomerName"],
 customers_df["Email"]
)

4.8 Union All
<!-- SSIS: Union All -->
<!-- Input 1: CurrentYearOrders -->
<!-- Input 2: PreviousYearOrders -->

Databricks equivalent
Union with same schema
combined_df = current_year_orders.union(previous_year_orders)

Union with different column names (align schemas)
combined_df = current_year_orders.unionByName(
 previous_year_orders,
 allowMissingColumns=True # Handle schema differences
)

Multiple unions
from functools import reduce

dataframes = [df_2023, df_2024, df_2025]
combined_df = reduce(lambda a, b: a.unionByName(b, allowMissingColumns=True), dataframes)

__
5. Connection Manager Migration
5.1 SQL Server Connection
SSIS Connection Manager -> Databricks Secret Scope

Create secret scope (one-time setup via CLI)
databricks secrets create-scope --scope sql-server

Store secrets
databricks secrets put --scope sql-server --key host
databricks secrets put --scope sql-server --key database
databricks secrets put --scope sql-server --key user
databricks secrets put --scope sql-server --key password

Use in notebook
def get_sqlserver_connection():
 """Get SQL Server connection configuration."""
 return {
 "url": f"jdbc:sqlserver://{dbutils.secrets.get('sql-server', 'host')}:1433;database={dbutils.secrets.get('sql-server', 'database')}",
 "user": dbutils.secrets.get("sql-server", "user"),
 "password": dbutils.secrets.get("sql-server", "password"),
 "driver": "com.microsoft.sqlserver.jdbc.SQLServerDriver"
 }

Read from SQL Server
config = get_sqlserver_connection()
df = (spark.read
 .format("jdbc")
 .option("url", config["url"])
 .option("dbtable", "dbo.Orders")
 .option("user", config["user"])
 .option("password", config["password"])
 .option("driver", config["driver"])
 .load()
)

5.2 Flat File Connection
SSIS Flat File Connection Manager -> Spark read options

CSV file with specific configuration
df = (spark.read
 .format("csv")
 .option("header", "true")
 .option("delimiter", "|")
 .option("quote", '"')
 .option("escape", "\\")
 .option("encoding", "UTF-8")
 .option("dateFormat", "yyyy-MM-dd")
 .option("timestampFormat", "yyyy-MM-dd HH:mm:ss")
 .option("nullValue", "NULL")
 .option("mode", "PERMISSIVE")
 .option("columnNameOfCorruptRecord", "_corrupt_record")
 .schema(defined_schema) # Optional: define schema
 .load("/mnt/landing/data.csv")
)

Fixed-width file
Use substring to parse fixed-width columns
fixed_width_df = (spark.read
 .text("/mnt/landing/fixed_width.txt")
 .select(
 F.substring("value", 1, 10).alias("field1"),
 F.substring("value", 11, 20).alias("field2"),
 F.substring("value", 31, 10).alias("field3")
)
)

__
6. Variable and Parameter Migration
6.1 Package Variables
SSIS Package Variables -> Databricks equivalents

Option 1: Notebook widgets (interactive)
dbutils.widgets.text("process_date", "", "Process Date")
dbutils.widgets.dropdown("environment", "dev", ["dev", "staging", "prod"])

process_date = dbutils.widgets.get("process_date")
environment = dbutils.widgets.get("environment")

Option 2: Job parameters (scheduled jobs)
Access via spark.conf
process_date = spark.conf.get("process_date", str(date.today()))
environment = spark.conf.get("environment", "dev")

Option 3: Environment variables
import os
process_date = os.environ.get("PROCESS_DATE", str(date.today()))

Option 4: Task values (pass between tasks in a job)
Set in task
dbutils.jobs.taskValues.set(key="row_count", value=1000)
dbutils.jobs.taskValues.set(key="status", value="SUCCESS")

Get in downstream task
row_count = dbutils.jobs.taskValues.get(
 taskKey="previous_task",
 key="row_count",
 default=0
)

6.2 Package Expressions
SSIS Expression equivalents in Python

Date expressions
from datetime import datetime, timedelta

today = datetime.now().date()
yesterday = today - timedelta(days=1)
first_of_month = today.replace(day=1)
last_month = (first_of_month - timedelta(days=1)).replace(day=1)

String expressions
file_name = f"orders_{today.strftime('%Y%m%d')}.csv"
table_name = f"staging.orders_{today.strftime('%Y_%m')}"

Dynamic SQL
query = f"""
 SELECT *
 FROM orders
 WHERE order_date = '{yesterday}'
"""

Configuration-based logic
if environment == "prod":
 connection_string = prod_connection
 max_errors = 10
else:
 connection_string = dev_connection
 max_errors = 100

__
7. Error Handling Migration
7.1 OnError Event Handler
SSIS OnError Event Handler -> Databricks try/except

def process_orders_with_error_handling():
 """Process orders with comprehensive error handling."""
 try:
 # Main processing logic
 source_df = spark.table("bronze.orders")
 transformed_df = transform_orders(source_df)
 transformed_df.write.saveAsTable("silver.orders")

 # Log success
 log_process_status("orders_etl", "SUCCESS", transformed_df.count())
 return True

 except Exception as e:
 # Log failure
 log_process_status("orders_etl", "FAILED", 0, str(e))

 # Send notification
 send_error_notification("orders_etl", str(e))

 # Re-raise or handle
 raise

def log_process_status(process_name, status, record_count, error_message=None):
 """Log process status to audit table."""
 spark.sql(f"""
 INSERT INTO audit.process_log
 VALUES (
 '{process_name}',
 '{status}',
 {record_count},
 {f"'{error_message}'" if error_message else "NULL"},
 current_timestamp()
)
 """)

def send_error_notification(process_name, error_message):
 """Send error notification (webhook, email, etc.)."""
 import requests

 webhook_url = dbutils.secrets.get("scope", "slack_webhook")
 requests.post(webhook_url, json={
 "text": f"ETL Failed: {process_name}\nError: {error_message}"
 })

7.2 Row-Level Error Handling
SSIS Error Output -> Databricks error handling

def process_with_row_level_errors(source_df, target_table, error_table):
 """Process data with row-level error handling."""

 # Add validation columns
 validated_df = (source_df
 .withColumn("_is_valid",
 (F.col("customer_id").isNotNull()) &
 (F.col("amount") > 0) &
 (F.col("order_date").isNotNull())
)
 .withColumn("_error_reason",
 F.when(F.col("customer_id").isNull(), "Null customer_id")
 .when(F.col("amount") <= 0, "Invalid amount")
 .when(F.col("order_date").isNull(), "Null order_date")
 .otherwise(None)
)
)

 # Split into good and error records
 good_records = validated_df.filter(F.col("_is_valid")).drop("_is_valid", "_error_reason")
 error_records = validated_df.filter(~F.col("_is_valid")).drop("_is_valid")

 # Write good records
 good_records.write.mode("append").saveAsTable(target_table)

 # Write error records
 if error_records.count() > 0:
 (error_records
 .withColumn("_error_timestamp", F.current_timestamp())
 .withColumn("_source_system", F.lit("orders_etl"))
 .write.mode("append")
 .saveAsTable(error_table)
)

 return good_records.count(), error_records.count()

Usage
good_count, error_count = process_with_row_level_errors(
 source_df,
 "silver.orders",
 "error.orders_errors"
)
print(f"Processed: {good_count} good, {error_count} errors")

__
8. Orchestration Migration
8.1 SSIS Package to Databricks Job
Databricks Job definition (equivalent to SSIS package)
job_config = {
 "name": "Orders_ETL_Pipeline",
 "tags": {
 "migrated_from": "SSIS",
 "original_package": "Orders_Load.dtsx"
 },
 "schedule": {
 "quartz_cron_expression": "0 0 6 * * ?", # Daily at 6 AM
 "timezone_id": "America/New_York"
 },
 "tasks": [
 {
 "task_key": "truncate_staging",
 "notebook_task": {
 "notebook_path": "/Jobs/Orders/01_truncate_staging"
 }
 },
 {
 "task_key": "extract_orders",
 "depends_on": [{"task_key": "truncate_staging"}],
 "notebook_task": {
 "notebook_path": "/Jobs/Orders/02_extract_orders",
 "base_parameters": {
 "source_date": "{{job.start_time.iso_date}}"
 }
 }
 },
 {
 "task_key": "transform_orders",
 "depends_on": [{"task_key": "extract_orders"}],
 "notebook_task": {
 "notebook_path": "/Jobs/Orders/03_transform_orders"
 }
 },
 {
 "task_key": "load_dimensions",
 "depends_on": [{"task_key": "transform_orders"}],
 "notebook_task": {
 "notebook_path": "/Jobs/Orders/04_load_dimensions"
 }
 },
 {
 "task_key": "load_facts",
 "depends_on": [{"task_key": "load_dimensions"}],
 "notebook_task": {
 "notebook_path": "/Jobs/Orders/05_load_facts"
 }
 },
 {
 "task_key": "update_log",
 "depends_on": [
 {"task_key": "load_facts"}
],
 "notebook_task": {
 "notebook_path": "/Jobs/Orders/06_update_log"
 }
 }
],
 "email_notifications": {
 "on_failure": ["team@company.com"],
 "on_success": ["reports@company.com"]
 },
 "max_concurrent_runs": 1
}

__
9. Migration Validation
9.1 Data Reconciliation
def reconcile_ssis_databricks(
 ssis_export_path: str,
 databricks_table: str,
 key_columns: list,
 tolerance: float = 0.001
) -> dict:
 """
 Compare SSIS output with Databricks output.

 Args:
 ssis_export_path: Path to SSIS exported data
 databricks_table: Databricks table name
 key_columns: Columns to use as join keys
 tolerance: Numeric comparison tolerance

 Returns:
 Reconciliation results
 """
 # Load SSIS export
 ssis_df = spark.read.parquet(ssis_export_path)

 # Load Databricks output
 db_df = spark.table(databricks_table)

 # Row count comparison
 ssis_count = ssis_df.count()
 db_count = db_df.count()

 # Find differences
 ssis_only = ssis_df.join(db_df, key_columns, "left_anti")
 db_only = db_df.join(ssis_df, key_columns, "left_anti")

 results = {
 "ssis_count": ssis_count,
 "databricks_count": db_count,
 "count_match": ssis_count == db_count,
 "ssis_only": ssis_only.count(),
 "databricks_only": db_only.count(),
 "reconciled": ssis_count == db_count and ssis_only.count() == 0
 }

 return results

__
10. Migration Checklist
10.1 Pre-Migration
[] Inventory all SSIS packages
[] Document control flow logic
[] Document data flow transformations
[] Identify connection managers and credentials
[] Map variables and parameters
10.2 During Migration
[] Convert control flow to Databricks jobs
[] Convert data flows to notebooks
[] Migrate connection strings to secret scopes
[] Implement error handling
[] Add logging and monitoring
10.3 Post-Migration
[] Run parallel execution tests
[] Compare output data
[] Validate row counts and checksums
[] Performance comparison
[] Update operational documentation
__
Document Control:
Version: 1.0
Created: 2025-01-24
Last Review: 2025-01-24
Next Review: 2025-04-24

